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This paper discusses the question how the membership functions in a fuzzy rule based system
can be extracted without human interference. There are several traming algonthms, which
have been developed initially for neural networks and can be adapied o fuzzy systems. Other
algorithms for the extrachion of fuzzy rules are inspired by biological evolution. In this paper
one of the most successful neural networks training algorithm, the Levenberg-Marquardt
algonthm, i1s discussed, and a very novel evolutionary method, the so-called “bacterial
algonthm™, are introduced. The class of membership functions investigated is restricted to the
trapczoidal onc as it is general enough for practical applications and is anyway the most
widely used one. The method can be easily extended to arbitrary piecewise linear functions as
well. Apart from the neural networks and evolutional algorithms, furzzy clustering has also
been uwsed for rule extraction. One of the clustering-based rule extraction algorithms that
works on the projection of data is also reported n the paper.
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Introduction

In the application of fuzzy systems to modelling and control one of the most
mal

important tasks is to find the opti

rule base. This might be given by a human

expert or might be given a priori by the linguistic description of the modelled
system. If, however, neither a suitable expert, nor the necessary linguistic
descriptions are available, the system has to be designed by other methods based on
numerical data. In training, the objective is to tune the membership functions in the

199



200 L. T. Kéeey et al

fuzzy system such that the system performs a desired mapping of input to output.
The mapping is given by a set of examples of this function, the so-called pattern set.
Each pattern pair p of the patiemn set consists of an input activation vector x* and its
target activation vector /*'. Afier training the membership functions, when an input
activation x™ is presented, the resulting output vector y'*' of the fuzzy system
should equal the target vector /7. The distance between the target and the actual
output vector must be minimised for each pattern. There are several methods to
minimise these distances. These methods can be adopted from the field of neural
networks or from the evolution phenomenon of living beings. The paper is
organised as follows. Section 2 describes the basics of fuzzy systems. The neural
network algorithm is shown in the Section 3. In Section 4 the bacterial algorithm is
described. In section 5, 6, 7, 8 and 9, we complete our discussion by introducing a
fuzzy clustering based rule extraction technique. Section 10 is the conclusion of the
paper.

2  Fuzzy systems

The theory of fuzzy logic was developed by Zadeh in the early 1960s. His theory
was essentially the rediscovering the multivalued logic created by Lukasiewicz,
however, with going much further in some application related aspects. In 1973 he
pointed out that the new fuzzy concept could be excellently used for describing very
complex problems with a system of fuzzy relations represented by a fuzzy rule base
[1]. A fuzzy rule base contains fuzzy rules R;:

Ri: IF (x1 is Ail) AND (x2 is Ai2) AND ... AND (xn is Ain) THEN (y is Bi), (1)

where A, and B, are fuzzy sets, x; and y are fuzzy inputs and output. The
meaning of the structure of a rule is the following:

IF Premise THEN Conclusion )

where the premise consists of antecedents linked by fuzzy AND operators. The
Centre of Gravity (COG) defuzzification method i1s used here because it is general
and easy to compute. This method calculates the crisp output by the sums of the
centre of gravities of the conclusions. Thus, a fuzzy inference system can compute
output y of an input vector x. The main purpose is to make the best solution possible
for each input vector, therefore the optimum rule base need lo be found.

3 The Levenberg-Marquardt algorithm

Our goal is to find the optimal rule base. This means that the distances between the
targets and the corresponding output vector gives smaller error than in the case of
another rule base. The error is measured by the following function:
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P
E= %Z{rlpl _ yIF}}I 3)

where P is the number of patterns in the pattern set, 1 is the p” target

vector, yf"" is the p output vector. The most used method to minimise (3) is
the Error-Back-Propagation (BP) algorithm, [7] which is a steepest descent
algorithm. A newer method is the Levenberg-Marquardt algorithm. Denoting the

parameter vector by z, and the Jacobean matrix by J :

_,r[j;] aJ’_LM

52" [k] 4)
i{k] = g[k] - ;[ﬁ: - l] the LM update, is given as the solution of
(L[ lk]+aD)slk]=-glk] = -/ [kklk] )

In (5), a is a regularization parameter, which controls the both the search
direction and the magnitude of the update. (5) can be recast as:

slk]= ~|iJ[k] (6)

The complexity of this operation is of t‘.}' }. where n 15 the number of

columns of i . If we apply this algorithm in fuzzy systems then the parameters z

must be found. The structure of the fuzzy system is the following:
A grid in the input space is defined. Vectors of knots must be defined, one
for each input dimension. These vectors determine the place of the

membership functions. In each i”axis 4, ; will be defined, where

j=0,,...,r.. They are arranged in such a way that

ApSA,S..54, (7)

A ois the minimal and A is the maximal value of the i” input. The
membership functions can be interpreted as in Fig.1 (it is a quasi Ruspini-partition,
namely it is a Ruspini-partition between A, and 4, y!
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Fig.1. The positions of the membership functions
The /* interval of the i* input is denoted by /,; and is defined as follows:
. :{1,1,.d._, A,) forj=l,.,r, =1

o I‘If.j—l "1:',;'] if j=r,

The j** membership function in the /* dimension:

(8)

[ x,=A,.
22 L] !.-lr xa € "ra..! =1
-'11.1;—1 'iu.: j=2
1, if x, €l
l”r 'II =3 I -
J{ } "'1.'.:;4-1 - X,

ifx, el ,,.,
"“r..t,.--!""lr.:,-1 J o

0, otherwise

(9)

or in another form:

X _'Ii.lj—z

Au j-1 _"L,: j-2

'J*i.z;-.a =X;

254 ""13,1;

H_,.r[-‘:-] = N.F,I_,f—l (I.-)q“m_z} (x,)+ Nﬂ}*i (x) (10)

where:
I, ifxel,
N = Y 1
i (x) {ﬂ, i xel, (11)

The number of membership function in the i dimension is:

m =1 (12)
]2

where I_J: J means the lower integer part of real x. The number of fuzzy rules:
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R=]Tm, (13)
i=1

where n is the number of input dimensions. Each output can be defined also by
four parameters: v, ,,V, ;,V, ,,V, ,in the r™ rule. The task is to find the location

of each A and v parameter. We suppose that the number of knots is given in each
input dimension, so the number of rules is also given. The inference method must

be discussed. The activation degree of the r’nﬂ:[iﬂhct—nurmisﬂ:cpmdml]:
w, =] T4, () (14)
=1
w, is the importance of the r.rulcifthcinput\r:c:lnris:.md p‘,ﬁ,(.‘ﬁ]hﬂ:
i* membership function in the r™ rule. The ™ output is being cut in the height
W, . Then with the COG defuzzification method the output is calculated:.

> Jyu(dy
Vo = "l'l FeESuppu, (¥) (15)
Y fue

r=1 yesuppy, (¥)
If this defuzzification method is used, the integrals can be easily computed. In
(15) y,,, will be the following:
2
D (C,+D,+E,)
1 el
Youw = I &
Zzwr{vr,-l _Pr.t}-l-“f{v*ﬂ V=V _P.-,j]
r=l
G =307, )0-w)
ﬂ,=-’“? VaVa V. r.l} (16)

Er="'€':"':-,1 =V Y VM =V Y )

The algorithm needs to be modified, so that the ordering relation between the knots
for each input dimension is maintained. In order to maintain the same search
direction, the update vector, when violation of (7) is detected (&, [k] <&, [£]), is




204 L. T. Kéczy et al.
reduced by a factor g so that the position of the (i+1)® knot is located half-way
between the previous distance of the two corresponding knots:

Ak =1]-2,[k -1]

£- 2(s,., [k]_iiW an

Jacobean computation: (4) can be written as follows:

&
J=|—=— = 18
- [ﬂi ﬁz] o
where
dy _dy ow,
= 19
94 ow, oA, 9

where A, is the k™ breakpoint of the i" membership function in the r™ rule. So:
Sy o o
= |ow, 04,,, ov,,

From (14) can be seen that w, depends on the membership functions , and each

membership function depends only on four A parameters. So, the derivatives of w,
will be:

(20)

ow, _ ﬂwr ﬂﬂ” - 5‘;..:' rd

r

oA ., om,, 04 ., =L[;:,.; ™

ri ok

(21)

. ri k
[E 3]

The derivatives of the membership functions will be calculated as follows:
ou, (x;) X _';1.':',_1:,_2
E‘lr.m ) (-‘lr.-.: o ‘Ar..f.l }1
ou, ,(x;) _ A =X
04, ;, (4,24, )"
au, ,(x,) T
a‘lr,t.! . {‘Ir.i.d . ’L.u]z
aﬂu{x:') _ X; _Au_x
E".lm._ll {‘Ir,a.i o "L.r.s ]z

Nr,f,] (Il }

N, ia(x,)
(22)

Nr,r'.-l- {‘x; )

Nr.r‘,l {I;' ]
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P and % have to be also computed. From (16) the following can be written:

ow, av,,

F

(23)

where par, =w,,V,,V,,,V,,V, ,, den is the denominator and num is the
numerator of (16) , resp. F . is the r' member of the sum in the numerator and
G . is the r' member in the denominator, v, is the k™ breakpoint of the r* output
membership function. The derivatives will be as follows:
% =3{"’:,- - r:.lm =2w, ) +6W, (v, v, —V, ¥, )
"'3""'-![ V3 =¥,)" =, =) ]

=20,y =V, ) 2W,(V, s +Y,, =V, =V, )

3 2|8

e

=—6w,v,, +6wiv, , =3wlv, , = 2wl (v, —v,,)

=Y
=

o

g

=2, +w}

=Y
=

A

5

v, ==3ulv,, + 2 (v,, -V, ;)

&

=—w

r

av,

—_= e Vea =W

va)

|

i'.-'-

V.4
oG,

dv,,
aF,

avr 4

=6w,v, , —6wv,  +3ulv, + 2wl (v, -V, ;) (24)
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The number of columns of J willbe 1, +n,. n, =4Zm, is the number of

A parameters and 11, = 4R is the number of v parameters.

4  The bacterial algorithm

Nature inspired some evolutionary optimisation algorithms suitable for global
optimisation of even non-linear, high-dimensional, multimodal, and discontinuous
problems. The original genetic algorithm (GA) was developed by Holland [2] and
was based on the process of evolution of biological organisms. A more recent
approach is the bacterial evolutionary algorithm (BEA). This gives an alternative to
other algonthms, because it is simpler, and it is possible to reach lower error within
a short ime. This method includes not only the bacterial mutation operator - as in
the pseudo-bacterial genetic algorithm (PBGA) — but also the gene transfer
operation. These operations were inspired by the microbial evolution phenomenon.
The bacterial mutation operation optimises the chromosome of one bacterium, the
gene transfer operation allows to transfer information between the bacteria in the

population.

4.1  The encoding method.

The membership functions are described by four parameters with the four
breakpoints of the trapezium. Moreover the membership functions are identified h;
the two lnd:lt:ﬁ iand j. So, the membership function A fayb,.cydy) belongs to the i
n:l:e and the j* input variable. B{a, b, q,n‘.l is the output nmbershlp function of the
i rule. The relative importance of the j fuzzy variable in the i™ rule:

I} —{I{.'.

b,}- -ay

1, ifb,. =x <c,
N I A (5)
; _r.”, ifec, <x,<d,

y i
0, otherwise

» i a;<x,<b

where a,;<b, <c;<d; must hold.
So the encoding method of a fuzzy system with two mputs and one output, see

in Fig. 2.
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For example, Rule 3 in Fig. 2 means:

ifx; is A3p(4.3,5.1,5.4,6.3) and x;is Ayf1.2,1.3,2.7,3.1)
then y is B(2.6,3.8,4.1,4.4) (26)

where Ay and B; mean the trapezoidal membership function with the four
breakpoints.

4.2  The bacterial evolutionary algorithm:

42.1 Generating the initial population

First the initial (random) bacteria population is created. The population consists of n
chromosomes (bacteria). This means that all membership functions in the
chromosomes must be randomly initialised. The imitial number of rules in one
chromosome is N,,... So, n(k+1I)N,,.. membership functions are created, where k is
the number of input variables in the given problem, and each membership function
has four parameters.

422 Bactenal mutation

The bacterial mutation is applied to each chromosome one by one [5). First, m -1
copies (clones) of the rule base are penerated [4]). Then a certain part of the
chromosome [5] is randomly selected and the parameters of this selected part are
randomly changed in each clone (mutation). Next all the clones and the original
bacterium are evaluated by the error criterion. The best individual transfers the
mutated part into the other individuals. This cycle is repeated for the remaining
parts, until all parts of the chromosome have been mutated and tested. At the end
the best rule base is kept and the remaining m -1 are discharged. The above
procedure 1s repeated once more, however, with different parameters [4]. It is an
important question how long is one part suffering mutation and what is the degree
of the mutation (expressed as the relative size in terms of the mterval). This
approach allows both selecting more than one membership function and fine-tuning.
The number of mutated membership functions and the mutation degree are external
parameiers of the bacterial mutation. If selecting more than one membership
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function is allowed then the local minima in the optimisation process can be
avoided. Application of changing two or more membership functions at a ime with
fine-tuning in the first bacterial mutation and in the second step changing one
membership function in the whole interval of the given variable was proposed in

[4].

4.3  Gene transfer

The gene transfer operation allows the recombination of genetic information
between two bacteria. (see Fig.3)

1.

2.

First the population must be divided into two halves. The better bacteria are
called superior half, the other bactena are called inferior half. [5]

One bacterium is randomly chosen from the superior half, this will be the
source bacierium, and another is randomly chosen from the inferior half, this
will be the destination bacterium.

| [TTH]

[TTT1
wee ) (TIITTIT]
hal

EEEEE NEEN
we | (TR TTTT]
bt :

[(TIITITTIIT]

L

Fig .3. Gene transfer

A “good™ part from the source bacterium is chosen and this part can overwrite a
not-so-good part of the destination bacterium or simple be added. [5] A good
part can be a fuzzy rule with a high degree of activation value. The activation
value of a fuzzy rule can be calculated for example:

_ P
Wi = lij“ @n
P4

=

where w; is the mean activation value of the rule!  rule, w'" is the activation

value of the i” rule for the j”' pattern, P is the number of patterns. So the best



Fuzzy Rule Ertraction from Input/Output Data 209

part of the source bacterium is the rule which has the greatest mean activation
value.

4. 1, 2, and 3 are repeated for N __times, where N_.is the number of
“infections” per generation. [5].

4.4  Stop condition

If the population satisfies a stop condition or the maximum generation number is
reached then the algorithm ends, otherwise it returns to the bacterial mutation step.

Between the bacterial mutation and the gene transfer step further operators can
be apphed, which optimise the rule number in the rule base. [6]

5 Clustering-Based Rule Extraction Technigue

Recently, clustering-based approaches have been proposed for rule extraction [10,
11]. Most of the techniques use the idea of partiioning the input space into fixed
regions to form the antecedents of the fuzzy rules. Although these techniques have
the advantage of efficiency, they may lead to the creation of a dense rule-base that
suffers from rule explosion. In general, the number of rules generated is  where d
15 the number of input dimensions and ¢ is the terms per input. In this case, the
number of rules generated grows exponentially with the increase of input
dimensions. Due to this reason, the techniques are not suited for generating fuzzy
rule-bases that have a large number of input dimensions.

Among the rule extraction techniques proposed in the literature, Sugeno and
Yasukawa’s [12] technique (abbreviated as SY method hereafter) is one of the
carliest works that emphasize the generation of a sparse rule-base. The SY
approach clusters only the output data and induces the rules by computing the
projections to the input domains of the cylindrical extensions of the fuzzy clusters.
This way, the method produces only the necessary number of rules for the input-
output sample data (more details later). The paper [12] discusses the proposed
technique at the methodological level leaving out some implementation details. The
SY technique was further examined in [16,17] where additional readily
implementable techniques are propose to complete the modeling methodology.

In this paper, a novel rule exiraction techmque that works on the projection of
data and fuzzy clustering is introduced. The technique, known as projection-based
fuzzy rule extraction (PB) , extends the idea of SY approach for fuzzy modeling.
The goal of the rule extraction technique 15 to automate the construction of a fuzzy
rule base from a set of input-output sample data. In the next paragraphs, a brief
description of the original SY method is presented.

In the first step of SY modelling, the Regularity criterion [13] is used to assist
in the identification of “true’ input variables that have significant influence on the
output. The input vanables that have less or no influence on the output are ignored
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for the rest of the process. The true input variables are then used in the actual rule
extraction process. The rule extraction process starts with the determinition of the
partition of the output space. This is done by using fuzzy c-means clustering [14]
(see section 6).

For each output fuzzy cluster B; resulting from the fuzzy c-means clustering, a
cluster in the input space A, can be induced. The mput cluster can be projected onto
the various input dimensions to produce rules of the form:

Ifx1is A;; and x2 is Az and ... x, 15 A, then y 15 B;

However, it is remarked in the paper [12] that there can be more than one fuzzy
cluster in the input space which comresponds to the same fuzzy cluster B;. In this
case more than one rule is formed with the same conseguent. Suppose that two
input clusters (A; and A;) are induced from the output cluster B;, we obtain the
following two rules:

Ifx1is Aj; and x2 is Az and ... x, 15 A, then y i1s B,
Ifx11is Ay and x2 is Aj;and ... x, is Aj, then y is B

Unfortunately, no concrete procedures for determiming the number of input
clusters to be induced from an output cluster is discussed in the paper.

6 Fuzzy C-Means Clustering

Given a set of data, Fuzzy c-Means clustering (FCMC) performs clustering by
iteratively searching for a set of fuzzy partitions and the associated cluster centers
that represent the structure of the data as best as possible. The FCMC algorithm
relies on the user to specify the number of clusters present in the set of data to be
clustered. Given the number of cluster ¢, FCMC partitions the data X =
{X1,X2,...,Xa} into ¢ fuzzy partitions by minimizing the within group sum of squared
error objective function as follows (egn 28).

JLUP) =Y Y U) % ~v, I, 1Sms o
k=l i=l {IE}

where J(U,V) is the sum of squared error for the set of fuzzy clusters
represented by the membership matrix U, and the associated set of clust:r centers V.,
|l.l| is some inner product-induced norm. In the formula, ||x; - vil* represents the
distance between the data x, and the cluster center v;. The squared error is used as a
performance index that measures the weighted sum of distances between cluster
centers and elements in the corresponding fuzzy clusters. The number m governs
the influence of membership grades in the performance index. The partition
becomes fuzzier with increasing m and it is proven that the FCMC algorithm
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converges for any m € (1,=) [1]. The necessary conditions for eqn 28 to reach its
minimum are

. 2/(m-1)
U, = E[M] Vi, vk

A xg =V, I
(29)
and
2. WU x,
v, = L
2 W)
=l (30)

In each iteration of the FCMC algorithm, matrix U is computed using eqn 29
and the associated cluster centers are computed as eqn 30. This is followed by
computing the square error in eqn 28. The algorithm stops when either the error is
below a certain tolerance value or its improvement over the previous iteration is
below a certain threshold.

The FCMC algorithm cannot be used in situations where the number of clusters
in a set of data is not known in advance. Since the introduction of FCMC, a
reasonable amount of work has been done on finding the optimal number of cluster
in a set of data. This is referred to as the cluster validity problem. The optimal
number of clusters are determined by means of a cniterion, known as the clusier
validity index. Sugeno and Fukuyama proposes the following cluster validitiy
index [15].

S@=Y. YW (Ix-v, I ~llv,-FF)  2<c<n G

k=1 =1

where n is the number of data points to be clustered; ¢ is the number of clusters;
xy is the k" data, X is the average of data; v, is the i cluster center; Uy is the
membership degree of the kX data with respect to the i cluster and m is the fuzzy
exponent. The number of clusters, ¢, is determined so that S¢c) reaches a local
minimum as ¢ increases. The terms || x; - v, || and || vi- X || represent the variance in
each cluster and variance between clusters respectively. Therefore, the optimal
number of clusters is found by mimimizing the distance between data to the
corresponding cluster center and maximizes the distance between data in different
clusters. Other cluster validity indexes can be found in [18]
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7

Projection-Based Rule Extraction Technique

The main idea of the proposed PB rule extraction technique 1s similar to the SY
approach [12]. Below, our novel technique will be discussed. The algorithm of the

approach consists of 5 steps.

1.

Perform fuzzy clustering on the output space. We suggest the use of Fuzzy-c
Means Clustering with a suitable cluster validity index but remark that our
algorithm does not place any restriction on the clustering technigue used.

For each fuzzy output cluster B; approximated, all the points belonging to the
cluster are projected back to each of the input dimensions. For each dimension,
fuzzy clustering is again applied to the projection of the points.

The previous step results in multiple 1D fuzzy clusters in each input dimension.
For each fuzzy cluster, a trapezoidal cluster is ‘approximated using the
technique discussed in section 8.

Each of the n clusters (C; — Cg/ in the input dimension |, 15 a projection of the
multi-dimensional input cluster to that input dimension. Next the clusters from
individual dimensions are combined to form the multi-dimensional input
cluster. The merging process 15 descnbed in section 9.

For each of the multi-dimensional cluster identified, a rule can be formed. For
example, if a multi-dimensional cluster is formed with [C,, Ci; Cis,] for the
points projected from output cluster B;, we obtain the following rule:

If x1 1s Cy; and x2 18 C5; and x3 15 Cy; then y 15 B,

Where C, is the n™ cluster identified at input dimension 4.

Trapezoidal Approximation Technigque

A straightforward trapezoidal approximation technique from fuzzy clusters has

been proposed mn [16]. The trapeze approximation of the clustered raw data is
proceeded in two steps. First, the convex hull of the original data set 1s determined,
then the convex hull is approximated by a trapezoidal membership function. Figure
4 depicts the idea of the construction of trapezoidal membership function.

3

(a) (b) (c)

Fig.4. The positions of the membership functions
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The algorithm is the following:

1.

partition as illustrated in

Determine p, and p,, the minimum/maximum of the membership degree of
the data point in the given cluster, X,... the frst point where the maximum p..
15 attained, further d;, and d.,, the minimum/maximum of all the data values
in the given cluster domain.

Set the boundaries of investigated interval to

m=pu_ —+pu_Ir (32)

r—1
M=me+ymfr (33)

where r >1 is a given parameter, usually between 2 and 4.
Determine the parameters of the left slope, x, and x;, as:
a) Let us imitialize x; as the last data point which has smaller membership
degree than m and x1 be the next point of the convex hull:
uix; ) <m; HiXjer) = plxi) > m.

(If there is no such point x in the convex hull which satisfies p(x)
< m then x; and x; is the first two leftmost point of the convex hull).
Furthuﬂhepamnwtmufthel:ﬁx.—dmandx;-dﬁ

b) Lﬂl.ﬂd;;hﬁlh#hﬂhunufthcmt:nmhunmd:bym:mppmm
the core, respectively, with the line passing through the points (x; ; p(x;))
and (x;; p(x;)) (see Figure 5).

c) If:li. > x,; then x, 'l|

d) ]fx;-i;;nn-j+lth=nxz:=x'1

e) IfXi) S Xy then let i := i + 1 and go to step (3b), otherwise continue

Determine the parameters of the left slope, x, and x;, analogously as in the

previous step.

Order the parameters according to x; < x; < X3 < x4

For the convenience of later steps, we convert the trapezoidal clusters to ruspini

e e Ll T T

>

Fig.5. Determination of X', and X'y
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9 Merging Scheme

The reconstruction of multi-dimensional clusters by combining the 1D clusters
identified at each dimension can be problematic. Let r be the average number of
clusters identified at each dimension. The total number of possible combination is
f'. Since the number of combination grows exponentially with the increase of
dimensions, examining every combination of the 1D clusters is computationally
infeasible. In this section, we propose a fast merging technique.

The merging process involves the use of a threshold r. The cluster in the multi-
dimensional space is determined to be the region where the number of projected
points in the region exceeds 1. A point p is contained in the cluster C; if pci(p) >
ucilp) for all jei.

The 4-step algorithm is presented.

1. Find one of the multi-dimensional clusters C where the number of points that

falls into all its projection exceeds the threshold 1.

2. Remove all data points that are contained in the cluster C approximated.
3. Repeat steps | - 2 until no more cluster can be found.

The pseudo-C-code for step | of the algorithm is presented as follows.

10 PROCEDURE find MD _cluster

Let U, be the set of one-dimensional clusters in dimension §
Let mdCluster = [ ]
fori=1ltok
for each unit w & U,
utemp = mdCluster x u
if wtemp 1s dense
denseunit = wfemp
break
end if
end for

end for

For the convenience of discussion, we define [ | as the zero-dimensional
(empty) cluster where [ ] x C, = C;. The algorithm scans through each of the &
dimensions to0 find one of the multi-dimensional clusiers in the data giving the
complexity O(k). Having identified a cluster, all the data points that is contained
within the cluster is removed. The process is repeated until no more cluster can be
found. The overall complexity is O{ck) where ¢ is the {otal number of clusters in
the data. Since the complexity of the algorithm is linear, it is computational feasible
to deal with data with very large number of dimensions.
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Conclusions

The Leveneberg-Marquardt and the bactenal evolutionary algorithm were described
in this paper. The bacterial algorithm seems to be simpler and robust. In this
method, the fuzzy systems can be described easier, and the algorithm allows using
not only Ruspini-partition. Apart from the neural and evolutionary algorithm, a
clustering based rule extraction technigue has also been reported. The technique
has the advatage of being computationally efficient.

References

10.

1.

L.A.Zadeh: Outline of a new approach to the analysis of complex systems and
decision processes, IEEE Tr. Systems, Man and Cybernetics 3 (1973), pp. 28-
44

. J.H.Holland: Adaptation in Nature and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence,
MIT Press, Cambnidge, 1992.

. LJ. Fogel, AJ.Owens, and M.].Walsh: Artificial Intelligence through

Simulated Evolution, Wiley, New York, 1966.

. M.Salmeri, M.Re, E. Petrongari, and G.C.Cardarilli: A Novel Bacterial

Algorithm to Extract the Rule Base from a Training Set, Dept. of Electronic
Engineering, University of Rome, 1999,

. N.E.Nawa, and T.Furuhashi: Fuzzy System Parameters Discovery by Bactenal

Evolutionary Algorithm, IEEE Tr. Fuzzy Systems 7 (1999), pp. 608-616.

. J.Botzheim, B.Himori, and L. T.Kéczy: Extracting trapezoidal membership

functions of a fuzzy rule system by bacterial algorithm, 7" Fuzzy Days,
Dortmund 2001,Springer-Verlag, pp. 218-227.

. Werbos, P., Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences, PhD. Dissertation, Appl. . Math., Harvard University,
USA, 1974

. Marquardt, D., An Algonthm for Least-Squares Estimation of Nonlinear

Parameters, SIAM J. Appl. Math., 11, 1963, pp. 431-441

A_E.Ruano, C. Cabrita, J.V.Oliveira, L. T.Kéczy, D. Tikk: Supervised Training
Algorithms for B-Spline Neural Networks and Fuzzy Systems, Joint 9™ IFSA
World Congress and 20" NAFIPS International Conference, Vancouver,
Canada, 2001.

Wong, K.W., Fung, C.C., and Wong, P.M. As:]fgcmahngﬁmymlﬁ
inference systems for petrophysical properties prediction. in Proceedings of
IEEE International Conference on Intelligent Processing Systems. 1997,
Beijing.

Wang, L.X. and Mendel, ] M., Generating fuzzy rules by learning from
examples. IEEE Transactions on Systems, Man, and Cybemetics, 1992, 22(6):
p. 1414-1427.



216 L. T. Kdexy et al.

12.
13.
14.

15.

16.

17.

18.

Sugeno, M. and Yasukawa, T., A fuzzy-logic-based approach to qualitative
modeling. IEEE Transactions on Fuzzy Systems, 1993, 1(1): p. 7-31.

Thara, J., Group method of data handling towards a modelling of complex
systms - IV. Systems and Control (in Japanese), 1980. 24 p. 158-168.

Bezdek, J.C., Pattern Reconition with Fuzzy Objective Function Algorithms.
1981, New York: Plenum Press.

Fukuyama, Y. and Sugeno, M. A new method of choosing the number of
clusters for fuzzy c-means method. in Proceedings of the 5" Fuzzy System
Symposium. 1989,

Tikk, D., Gedeon, T. D., Koczy, L. T., and Biro, G. Implementation details of
problems in Sugeno and Yasukawa’s qualitative modelling. Research Working
Paper RWP-IT-02-2001, School of Information Technology, Murdoch
University, Perth, W.A., 2001. P. 17.

Wong, K.W., Kéczy, L.T., Gedeon, T.D., Chong, A. Tikk, D. (2001)
“Improvement of the Clusters Searching Algorithm in Sugeno and Yasukawa's
Quahtative Modeling Approach”™ in Reusch, B. (Ed), Computational
Intelligence: Theory and Applications, Springer-Verlag, Berlin, Proceedings of
Tth Fuzzy Days in Dortmund - Imternational Conference on Computational
Intelligence, October 2001, Dortmund, pp. 536-549.

Yang, M.S., Wu, K.L., A New Validity Index For Fuzzy Clustering, in
Proceedings of 1EEE International Conference on Fuzzy Systems, December,
Melbourne, 4 pages.





